

Software Requirements Specification (SRS)
Dungeon Quest

Team:	Group 7
Authors: 	Greg Kaplowitz, Nicholas Miceli, Derrick Lor, Wyatt LaRose, Alberto Chavez
Customer:	6th Graders
Instructor:	Dr. James Daly

1 Introduction
This is a software requirements specification document (SRS) outlining the necessary details about our proposed educational game.
In this document, we will have detailed subsections that will cover the following: 1.1 Purpose, 1.2 Scope, 1.3 Abbreviations, 1.4 Organization
2 Overall Description, 2.1 Product Perspective, 2.2 Product Functions, 2.3 User Characteristics, 2.4 Constraints, 2.5 Dependencies, 2.6 Apportioning Requirements
3 Specific Requirements
4 Modeling Requirements, 4.1 Use-Case Diagram, 4.2 Class Diagram, 4.3 Sequence Diagram, 4.4 State Diagram
5 Prototype, 6 References, 7 Contact.

 Purpose
The purpose of this document is to establish a basic requirement list between the clients, users, stakeholders, and developers of our proposed educational game. All participants involved in this software project must agree to this document, and hereby follow the established outline to the creation, documentation, and distribution of the proposed educational game.

 Scope
The software product being developed is titled “Dungeon Quest”. Dungeon Quest is aimed at the target audience of 4th to 6th grade students. It is an educational game meant to be a learning aid, not replacement, of core curriculum taught at public schools regulated by the Massachusetts Department of Elementary and Secondary Education.
The benefits of Dungeon Quest include the ability to have students be asked a wide or narrow variety of questions depending on the desires of the educator. Players will have the option to decide which core subjects they would like the questions to be drawn from.
The objective of Dungeon Quest is to provide a simple yet engaging experience for students to be able to reinforce the topics that are covered in their classroom. This includes reasonably paced gameplay for students in the 6th grade age range as well as questions drawn from the core curriculum provided by the Massachusetts Department of Elementary and Secondary Education.
The application domain for Dungeon Quest is that of an educational video game.
Dungeon quest will include game sessions that can reasonably be completed within a standard class mns block. Game sessions are meant to be played during the class and progress is not to be carried over throughout multiple class sessions. The game will give players the option to select what subject they would like to answer questions for and will provide more difficult questions the deeper the player is into their current session. Dungeon quest will keep track of player’s score throughout the session and display it upon completion (game over or game won) so users can aim to better their scores during future sessions.
Dungeon Quest does not intend to replace core curriculum teaching techniques but rather supplement them in order to reinforce the topics covered in a traditional class setting.
 Definitions, acronyms, and abbreviations
Definition list of all the terms, acronyms, and abbreviations in this document.
Educational game to be created is Dungeon Quest.
*Map = the selection screen where players choose which dungeon to play.
*Dungeon = the level and the specific genre covered in that level.
*Path = the direction the player can move to.
*Encounter = the battle between players and enemies.
*User = the person interacting with the software
*Enemy = the entity that the user is fighting against
*SRS = Software requirement specification
*UI = User Interface
*SW = Software
*HW = Hardware
*MDoE = Massachusetts Department of Education
*OS = Operating System
*CPU = Central Processing Unit
*RAM = Random Access Memory
*GPU = Graphics Processing Unit

 Organization
Going forward, the rest of the SRS will cover topics pertaining to the edutainment game’s interface design, functionality, user expectations, possible constraints, requirements, models and diagrams, and then finally points of contact.

Section 2 -
2.0 - Description of Section 2
2.1 - Product Perspective: The context for the product
2.2 - Product Functions: The functions that the software will perform
2.3 - User Characteristics: Expectations about the user
2.4 - Constraints on the development of the game
2.5 - Assumptions and Dependencies
2.6 - Apportioning of Requirements

Section 3 -
3.0 - List of requirements for the software

Section 4 -
4.0 - Modeling requirements
a. Use Case Diagram
b. Class Diagram/Data Dictionary
c. Sequence Diagrams
d. State Diagram

Section 5 -
5.0 - Description of what functionality the prototype will display
5.1 - How to run the prototype
5.2 - Sample Scenario
Section 6 -
6.0 List of references

Section 7 -
7.0 Contact information

1 Overall Description
This section will cover the context of the product, the major functions it will perform, the characteristics of the expected users, constraints on the software’s design, assumptions during production, and apportioning of requirements.
 Product Perspective

Dungeon Quest is designed to provide a fun environment where students can test their knowledge while playing an interactive game. Research has been done to support the fact that “using games in teaching can help increase student participation, foster social and emotional learning, and motivate students to take risks” [2] and Dungeon Quest will be no exception. By including questions based on 6th grade core curriculum set by the Massachusetts Department of Education and gameplay that incorporates fantasy elements kids are known to love, Dungeon Quest is the perfect game for students to improve their skills.
 	The interface needs to be kept simple so that children will have an easy time interacting with it. Dungeon Quest’s creation is constrained by Unity as that is the platform that has been chosen to develop with, but it has many different options that can be used to achieve this. There is data that should be present on different screens so a certain UI element will persist between scenes. Unity teams is being used to facilitate production which supplies 25GB of cloud storage space to develop collaboratively which constrains possible memory; however, Dungeon Quest will fit within these bounds. Finally, the current build of Dungeon Quest is being produced to run on Windows, however future iterations will include support for other platforms.

[image: Graphical user interface, application, website

Description automatically generated]
 Product Functions

The player will start Dungeon Quest and choose the difficulty level they would like to experience. From there, they will be given a map that consists of branching paths. Starting from the root of this tree-like structure they will pick one of the child paths. Choosing a path will take the user into the battle screen of the game where the educational aspect takes place.
During each battle, the user will be asked questions relating to the 6th grade core curriculum (MDoE). By answering correctly, the user’s character will attack the enemy and cause them to lose health. On the other hand, if the user answers incorrectly, the enemy will attack the user’s character causing them to lose one life. The battle continues until either the user’s character or the boss is out of health. In the former case, game over will be displayed to indicate that the user has lost, in the latter case the user will be returned to the map to select their next level or if they just beat the final level the game won screen will be displayed indicating that the user has completed a successful playthrough.
User’s scores will be tracked throughout a gameplay session and will increase for each question the user answers correctly (more difficult questions will award more score per question). Once the user reaches either the game over or game won screen, the score will be displayed to them.

 User Characteristics

The expected grade level of the users of Dungeon Quest are 6th graders (Approximately 11 years old). The users are expected to have enough foundational knowledge through typical teaching styles to have the ability to answer the questions asked of them in Dungeon Quest. The user ideally should have enough experience with multiple choice style questions to rule out incorrect answers and arrive at a reasonable answer to the questions provided. Users will be provided with different difficulty level options to suit 6th grade students at all levels of educational advancement.
Users are expected to have enough experience with computers to be able to play the game and will require the motor functions needed in order to interact with Dungeon Quest’s interface (through mouse or trackpad).
Finally, users should have the decision-making abilities necessary to navigate Dungeon Quest’s maps to seek out the end of the dungeon.
 Constraints
One constraint on the project is the memory allotted. Unity teams provide 25 GB of cloud storage to be used for Dungeon Quest which constrains how large the game can be. That said, Dungeon Quest will fit within these bounds. Also, only 5 members are allowed on a Unity team which constrains how many members can work on Dungeon Quest.
Another constraint is the hardware that the game will run on. The current build of Dungeon Quest is intended to be run on a Windows machine. Future iterations may provide builds for other platforms.
Finally, Dungeon Quest’s production is constrained by time. Given that only a couple of months are given to complete the project, there are certain features that will need to be trimmed to meet deadlines.

 Assumptions and Dependencies
Once assumption being made is that the computer running Dungeon Quest will have a mouse or trackpad to interact with the game. Also, this computer will have Windows operating system to run the game. The device must have the hardware specifications detailed in section 5.1 of this SRS document to successfully run the game.
The production of Dungeon Quest is dependent on Unity’s game development environment. Unity was selected because of its collaborative abilities using Unity teams as well as it being free to use.
Users of the game will not need to have access to Unity, as the game will be packaged as an executable.

 Apportioning of Requirements
Our biggest requirement that we probably won’t be able to do because of time is implementing a powerup system to alter how combat works. Currently our combat system is just answering questions, we might have both multiple choice and short answer but currently the requirement is for multiple choice. In future iterations of this game, we could make combat more interesting for users so that it isn’t simply based on answering questions.
Another requirement that is beyond the scope of the current iteration of our project is the ability for teachers to input their own questions for their students to be asked when playing through Dungeon Quest. This functionality would allow educators to fine tune the game to ensure that the questions being asked fit the scope of their lesson plan and would allow teachers of other grade levels (other than 6th) to utilize Dungeon Quest in their classrooms as well.

2 Specific Requirements

1. There shall be a main menu from which the game: “Dungeon Quest”, will begin when the user launches it
a. The menu will be dungeon themed with the name of the game as well as the buttons to navigate to other screens labeled “start game” and “about”
b. There will also be a “Quit” button that will exit the game
2. The “start game” button will display different options for different game modes
a. The user must then select which difficulty they would like to play (easy, medium, hard)
b. After the user selects their difficulty, the game will begin.
3. The game will begin with the user’s character in the dungeon selection screen with 5 lives (maximum).
a. The user will choose which path in the dungeon to take
i. Paths will determine the player’s route through the dungeon and what they encounter
ii. Paths can have encounters that have different types of questions (topic, difficulty, etc.)
b. Once a path has been selected, the user will enter an encounter with an enemy
i. Within the encounter the user will have a running life total
ii. The user will be asked questions in order to activate their attacks if answered correctly
iii. The monster will attack which prompts the player with a question, if the player gets it correct, they dodge, otherwise they are hit
c. Once enough questions have been answered, the enemy will be defeated, and the encounter will end.
i. The number of questions needed to defeat an enemy will depend on how far the user is into the dungeon, and the difficulty selected.
ii. Once the encounter ends, the user will be returned to the dungeon screen to select their next path.
d. If the user runs out of lives at any point, they will enter a final stand question
i. If the user answer this correctly they will be able to continue the encounter, if they answer incorrectly, they will be sent to a “game over” screen.
e. If the user reaches the end of the dungeon without running out of lives, a “Congratulations” screen will be displayed along with the user’s score
i. The score will be calculated based on how many questions the user gets right, it will be higher the fewer questions answered incorrectly
4. The “about” button will link the user to the website for the project
5. A bank of questions for each subject level
a. Questions should have a range of difficulties
b. Questions can be partitioned to different types of enemies
c. Questions are for 6th graders

3 Modeling Requirements

Use Case Diagram

[image: Diagram

Description automatically generated]
	Use Case Name:
	View About Page

	Actors:
	 Player

	Description:
	The Player clicks on the “About” button on the main menu and is directed to the project’s website

	Type:
	Primary

	Includes:
	None

	Extends:
	None

	Cross-refs:
	Requirement 4

	Uses cases:
	N/A

	Use Case Name:
	Start Game Session

	Actors:
	 Player

	Description:
	The Player clicks on the “Start” button on the main menu and begins a session of the game

	Type:
	Primary and Essential

	Includes:
	Select Difficulty/Dungeon

	Extends:
	None

	Cross-refs:
	Requirement 2

	Uses cases:
	N/A

	Use Case Name:
	Exit Game

	Actors:
	 Player

	Description:
	The Player clicks on the “Quit” button on the main menu and the game is exited

	Type:
	Primary

	Includes:
	None

	Extends:
	None

	Cross-refs:
	Requirement 1b

	Uses cases:
	N/A

	Use Case Name:
	Select Difficulty/Dungeon

	Actors:
	 Player

	Description:
	The Player selects which difficulty of dungeon they would like to play

	Type:
	Primary and Essential

	Includes:
	Encounter Enemy/Answer Question

	Extends:
	None

	Cross-refs:
	Requirement 2a

	Uses cases:
	Player must first click the start button to be able to select their difficulty

	Use Case Name:
	Encounter Enemy/Answer Question

	Actors:
	 Player

	Description:
	The Player battles an enemy by answering questions

	Type:
	Primary and Essential

	Includes:
	None

	Extends:
	None

	Cross-refs:
	Requirement 3b

	Uses cases:
	The player must have started a run of the game and selected their difficulty and a level to play

	Use Case Name:
	Answer Correctly

	Actors:
	 Player

	Description:
	The Player chooses the correct answer to a question asked in an enemy encounter

	Type:
	Primary and Essential

	Includes:
	None

	Extends:
	Encounter Enemy/Answer Question

	Cross-refs:
	Requirement 3bii

	Uses cases:
	The player must have started a run of the game and selected their difficulty and a level to play

	Use Case Name:
	Answer incorrectly

	Actors:
	 Player

	Description:
	The Player chooses the incorrect answer to a question asked in an enemy encounter

	Type:
	Primary and Essential

	Includes:
	None

	Extends:
	Encounter Enemy/Answer Question

	Cross-refs:
	Requirement 3biii

	Uses cases:
	The player must have started a run of the game and selected their difficulty and a level to play

Class Diagram:
[image: Graphical user interface, application, Teams

Description automatically generated]

Data Dictionary:
	Element Name
	Description

	MainMenu
	This class represents the main title screen that will be displayed upon launch of the game

	Attributes
	background : Image
	The image that will be displayed behind the text and buttons on the Main Menu

	
	title : String
	The title of the game “Dungeon Quest” that will be displayed on the Main Menu

	
	startGame : Button
	A button on the Main Menu that will begin the actual gameplay

	
	about : Button
	A button on the Main Menu that will open the website for our project

	
	quit : Button
	A button on the Main Menu that will exit the game altogether

	Operations
	startGameClicked() : void
	Called when the StartGame button is clicked, begins the gameplay

	
	aboutClicked() : void
	Called when the About button is clicked, displays project’s website

	
	quitClicked() : void
	Called when the Quit button is clicked, exits the game

	Relationships
	The main menu begins an instance of “Player” when the game is started. It is also displayed when a player quits during/after their run of the game.

	Element Name
	Description

	Player
	This class represents the player in the game and contains attributes that would carry with them throughout the encounters.

	Attributes
	numLives : int
	The current amount of lives a player has, how many more times they can be hit by the boss before game over

	
	score : int
	The current score that a player has

	Operations
	numLivesZero() : Bool
	Checks to see if the current value of NumLives is 0

	
	gameOver() : void
	Displays game over screen if num lives reaches 0

	Relationships
	Is created when start game is selected from the main menu. Views the map of the levels and displays the game over screen when necessary.

	Element Name
	Description

	Map
	This object represents the map of levels that the player will go through during the game

	Attributes
	mapBackground : Image
	The image that will be displayed behind the levels and other map icons

	
	currNode : LevelNode
	The node of the map that the player is currently standing on

	
	winNode: LevelNode
	The final node of the map that once beaten indicated the player has won

	
	nodeList: list
	Structure to hold all level objects of the map

	Operations
	playCurrNode() : void
	Begins the level associated with the node that the player is currently standing on

	
	moveLeft() : Bool
	Moves the player to the node to the left of them in the dungeon, returns true if move was successful

	
	moveRight() : Bool
	Moves the player to the node to the right of them in the dungeon, returns true if move was successful

	
	atWinNode() : Bool
	Checks if the current node is the win node

	
	currNodeBeated() : Bool
	Checks if the current node’s “Beaten” flag is set to true.

	Relationships
	The map is composed of a tree of multiple LevelNodes. It is viewed by the Player and plays the levels associated with its nodes. Finally, it displays the GameWon screen if the current node is the win node and it has been beaten

	Element Name
	Description

	GameOver
	This object represents the game over screen that will be displayed if the player runs out of lives

	Attributes
	gameOverText : String
	The main text that is displayed on the GameOver screen

	
	score : int
	The player’s score at the time of GameOver being displayed

	
	background : Image
	The background image displayed behind the other attributes on the GameOver screen

	
	playAgain : Button
	A button that begins a new gameplay loop

	
	quit: Button
	A button that returns the player to the MainMenu where they can exit the game

	Operations
	playAgainClicked() : void
	Begins a new gameplay loop by creating a new Player object

	
	quitClicked() : void
	Returns the player to the main menu

	Relationships
	The GameOver screen is displayed by the Player object. It has the option to exit to the main menu or begin a new player instance and restart the game.

	Element Name
	Description

	GameWon
	This object represents the game won screen that will be displayed if the player successfully completes the WinNode level

	Attributes
	gameWonText : String
	The main text that is displayed on the GameWon screen

	
	score : int
	The player’s score at the time of GameWon being displayed

	
	background : Image
	The background image displayed behind the other attributes on the GameWon screen

	
	playAgain : Button
	A button that begins a new gameplay loop

	
	quit: Button
	A button that returns the player to the MainMenu where they can exit the game

	Operations
	playAgainClicked() : void
	Begins a new gameplay loop by creating a new Player object

	
	quitClicked() : void
	Returns the player to the main menu

	Relationships
	The GameWon screen is displayed by the map object. It has the option to exit to the main menu or begin a new player instance and restart the game.

	Element Name
	Description

	LevelNode
	This object represents a single node on the tree that makes up the map of the dungeon

	Attributes
	parent : LevelNode
	The LevelNode that leads to this node

	
	left : LevelNode
	The left child of this LevelNode

	
	right : LevelNode
	The right child of this LevelNode

	
	beaten : Bool
	Indicates if the level associated with this node has been successfully completed by the player

	Relationships
	The map has a tree of LevelNodes that the player can traverse throughout the gameplay. Each LevelNode is associated with a Level object that can be accessed and played from the node.

	Element Name
	Description

	Level
	This object represents encounter where the player will be asked questions in order to defeat a boss

	Attributes
	bossHealth : int
	The current health level of the boss within the encounter

	
	player : Sprite
	The sprite displayed on screen representing the player

	
	boss : Sprite
	The sprite displayed on screen representing the boss

	
	background : Image
	The background image displayed behind the sprites and other on screen attributes.

	Operations
	askQuestion() : void
	Asks a question and displays it on the screen for the player to respond

	
	answerCheck() : Bool
	Called once an answer is provided, returns true is the answer is correct

	Relationships
	Each Level is associated with a specific LevelNode on the Map. The Map plays a Level when the player clicks on the LevelNode that it is associated with. The Level asks questions from the bank of questions to ask.

	Element Name
	Description

	Question
	This object represents one of the questions that a Level can ask

	Attributes
	class : string
	The class subject that this question is pertaining to

	
	difficulty : enum
	The difficulty level of this question

	
	text : String
	The actual text to display on screen in order to ask the question

	
	answer : String
	The correct answer for the question

	Relationships
	Question objects are asked by Level objects.

	Element Name
	Description

	MultipleChoice
	This object represents one of the questions that a Level can ask

	Attributes
	optionA : String
	The first possible answer that can be selected

	
	optionB : String
	The second possible answer that can be selected

	
	optionC : String
	The third possible answer that can be selected

	
	optionD : String
	The fourth possible answer that can be selected

	Relationships
	MultipleChoice is a subclass of the Question class.

Sequence Diagrams:
	Sequence 1: User loses game by answering incorrectly.
The user launces the game and on the main menu chooses to start the game. This creates a new player object with a full set of lives. The user then clicks on the LevelNode they are currently at (CurrNode) and the level for that node begins. Within the level, the user is asked questions if the boss’s health and the player’s number of lives remaining are above 0. Each answer provided by the user is then checked and is wrong so the Player’s number of lives decrements. Once NumLives is 0, the level exits and returns. Upon return, the Player checks their life count to see if it is 0. Because it is 0, the Player then displays the GameOver screen, and the user clicks quit which returns to the Main Menu.
[image: Diagram

Description automatically generated]

	Sequence 2: User views about page and then quits game
[image: Graphical user interface, text

Description automatically generated]
User Launches the game and then on the Main Menu they click on the “About” button. This button opens the projects webpage in their browser. Once they return to the game, they click the quit button which exits the game.

State Diagram:
[image: Diagram

Description automatically generated]

4 Prototype
The first prototype is a test of user interface design (UI) of the project. It will show an early build focusing on the basic start game loop and select dungeon/difficulty screen and quit game functionality. The only hardware component used is the mouse.
Upon loading the game, it will direct the user to the main menu page of the game. The main menu page consists of the start game button, which leads to a scene changer subroutine that directs to the gameplay loop of the game, and the quit game button, which exits out of the application.
Upon clicking the start game button with the left mouse click, a scene changer event listener will activate the next scene to be loaded. The map select scene is loaded, where the user will select the difficulty of the dungeon presented to them. To enter the dungeon, all the user must do is press the left mouse click while hovering over the icon of the dungeon. This will load the scene specific to the dungeon.
Included on every page except for the main menu is the back button. The back button will allow users to revert back to the previous scene. This will come in useful if the user ever finds themselves miss clicking on accident, or potentially soft locking the user into a gameplay loop where they can’t escape.
The quit game button, as it suggests, will close the game by calling scene changer event listener to exit the application. The quit game button discards any progress the user makes in the dungeons. Each game start up is a new clean save.
 How to Run Prototype

Minimum system requirements:
OS = Windows 7 or higher
CPU = Single core 2.0 GHz
RAM = 2 GB
GPU = Intel UHD graphics or equivalent
Size = 80MB
Hardware = Mouse
Prototypes require a mouse as the minimum hardware component required to play.

Version one of the prototype will have one executable (.exe) that only runs on Windows operating systems. All the necessary files associated with the game will be packaged into a zip file (.zip) to allow for compression and easy distribution. The zip file will be listed on the project website, available for download.
To run prototype one, download the zip file from the project website. Unzip the zip file into the current directory. Popular unzipping software tools are WinRar and 7zip, which are free to download online and use. Run the game by double clicking the .exe application.
	Download version one prototype at:
URL : https://derricklor.github.io/SWEProject/Website/documents.html
 Sample Scenarios
[image:]
When the game started the users will see this page where they can start by pressing start or exit by pressing exit, in this case lets assume the users presses the start button.
[image:]
The user will then see this screen where they can choose between 3 separate difficulty options. The user can press any button which will determine what types of enemies will generate in the dungeon. Lets assume the user is playing for the first time and chooses Easy.
[image: Diagram

Description automatically generated with medium confidence]
The user is then brought to this screen where they see the map. The whole map is visible the user can plan out what route they want to take to try and best make it to the end alive. Since the user is at the start there is only one possible encounter option so they will click the sword in the top left of the map.

[image: Graphical user interface

Description automatically generated]
This is an example encounter screen with a skeleton enemy. The user answers the questions by selecting the multiple choice and submitting. User can flee if the challenge is too difficult.
5 References

D. Thakore and S. Biswas, “Routing with Persistent Link Modeling in Intermittently Connected Wireless Networks,” Proceedings of IEEE Military Communication, Atlantic City, October 2005.
G. Kaplowitz, N. Miceli, D. Lor, W. LaRose, A. Chavez, “Dungeon Quest” (2021). https://derricklor.github.io/SWEProject/Website/index.html
H. Nguyen, “How to Use Gameplay to Enhance Classroom Learning,” Edutopia.org, March 2021.
Massachusetts Department of Elementary and Secondary Education. (2017). “Massachusetts Mathematics Curriculum Framework — 2017”. https://www.doe.mass.edu/frameworks/math/2017-06.pdf
Squire, Kurt. "Video games in education." Int. J. Intell. Games & Simulation 2.1 (2003): 49-62. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.543.5729&rep=rep1&type=pdf
6 Point of Contact
For further information regarding this document and project, please contact Prof. Daly at University of Massachusetts Lowell (james_daly at uml.edu). All materials in this document have been sanitized for proprietary data. The students and the instructor gratefully acknowledge the participation of our industrial collaborators.

	Template based on IEEE Std 830-1998 for SRS. Modifications (content and ordering of information)
	Revised: 11/12/2021 12:27 PM

image1.png
Massachusetts Department of Educaton Fantasy Game Elements

‘State outiine of necessary Enticing Gameplay allowing users
educational content 1o experience fictional worlds

v v
6th Grade Core Curriculum Dungeon Crawler
Required teachings for 61h graders Allow users to navigate a labyrinth,
set by the MDOE Encountering creatures along the way

Dungeon Quest

Users navigate a dungeon defeating
enemies by correctly answering
questions based on 6h grade core | «——
curriculum

image2.png
Dungeon Quest

View About
Page

Encounter
EnemyiAnswer

<<cinciudes> - Question

Select
Difficulty/Dungeon,

<<Edends>>

<<Eitends>>
- <<Includes>>-

Start Game
‘Session

Answer Incorrectly)~ Answer Correctly

Player

image3.png
Go back

[Begins Display
1 1
1
Player Map
MainMenu +numLives : int + currNode: LevelNode
+ background : Image
+score :int +winNode : LevelNode
+tte : Sting +score :nt
Begins + mapBackground : Image
+ startGame : Button View 1 1
+about : Button 1 1 T 1| 4 playCurNode() : void
+qut:Buton +moveLet) : Bool +qut:Buton
LivesZero() : Bool
+ startGameClicked() : void ++numlvesZerof) : Bool -+ moveRight() : Bool
+ aboutCicked() : vod *+gameOver) :void +aWinNodel) : Bool
+quitClicked() : void + currNodeBeaten() : Bool
1
L] + score : Int
LeveiNode 1
+ parent : LevelNode +quit: Button
Piays
+lt: LevelNode lo—,
1
+right : LeveiNode .
+ beaten : Bool Has Level

+bossHealth : int

+player : Sprite

I

GameOver

+gameOverText: String

+background :Image

+playAgai : Button

+playAgainClicked() : void

+ quitCiicked() : void

GameWon

+ gameWonText : String

+background : Image |1

+playAgai : Button

+playAgainClicked() : void

+ quitCiicked() : void

+boss Sprite
+background : Image
o 9 Question
+askQuestion() : void Asks + class: string
+ diffcuty: enum
+ answerCheck() : Bool +text:string

+answer: string

Multiple Choice

+option A: string
+option B: string
+option C: string
+option D: string

image4.png
Main Menu

Player Level

Launch |

| Start Game——p Giicks on Curriode

Gameover

oo
i “Ask Question

BossHealh >0 88
Player NumLivos >0

“Chock Answer

Faso
«—

Player NumLives--

o

reum

n)
Cleckiivos a0 7

gamo over

Glickon qut buton

P

image5.png
Main Menu

Giick on "About

Glick on "Quit"
o exit game

image6.png
User clicks quit

User quits to

User clcks play again

User clicks Quit

User clicks About

View Project
page

User clcks back

User olicks start

ungeon/Difficuty

User clcks qu

User runs out of ve

et pago User cicks play again-

User chooses difculty

User chooses nextfovel
toplay

Boss

jsor wins winNods love
Encounter

image7.png
Dungeon
Quest

image8.png

image9.png

image10.png

